Improvising Design & Performance of PHE
Scope

• Heat Transfer Theory

• Parameters defining Heat transfer performance

• Typical discussions

• Codes & standards
Law of Heat Transfer

Heat will flow from HOT ==> COOL medium

Temperature difference is necessary

Energy rejected from HOT side = Energy absorbed by COLD side
(.......minus losses to the surroundings)
Designing Heat Exchanger

\[Q_{\text{fluid1}} = \dot{Q}_{\text{PHE}} = Q_{\text{fluid2}} \]

\[Q_{\text{Fluid}} = m \cdot C_P \cdot DT \]

- \(m \) = Mass flow of fluid
- \(C_P \) = Specific heat capacity
- \(DT \) = Temp. diff. of fluid (IN/OUT)

\[m_1 \cdot c_p_1 \cdot \Delta T_1 = U \cdot A \cdot \text{LMTD} = m_2 \cdot c_p_2 \cdot \Delta T_2 \]
Heat Load and Heat Balance

- The heat load of a heat exchanger is:

\[Q_H = m_H \times C_{pH} \times \Delta T_H \] for hot side

\[Q_C = m_C \times C_{pc} \times \Delta T_C \] for cold side

\[Q = U \times A \times \text{LMTD} \]

The heat balance is:

\[Q = Q_H = Q_C \]
Heat Transfer Coefficient

The overall heat transfer efficient is:

\[
\frac{1}{k} = \frac{1}{\alpha_H} + \frac{1}{\alpha_C} + \frac{d}{\lambda} + R_f
\]

d - the thickness of the heat transfer plate
l - the thermal conductivity of
 the heat transfer plate material (W/m², °C)
R_f - the fouling factor (m² °C/W)
Logarithmic Mean Temperature Difference

\[\text{LMTD} = \frac{\Delta_1 - \Delta_2}{\ln(\Delta_1/\Delta_2)} \]
LMTD

- LMTD means Logarithmic Mean Temperature Difference

- LMTD is the driving force for heat transfer from the hot fluid to the cold fluid. (The average temperature difference between the two fluids)

- The smaller LMTD, the bigger heating surface required

- The smaller LMTD, the higher heat recovery
Thermal Length

\[LMTD = \frac{(\Delta 1 - \Delta 2)}{\ln(\Delta 1/ \Delta 2)} \]

\[\Theta 1 = \frac{\Delta T1}{LMTD} \quad \Theta 2 = \frac{\Delta T2}{LMTD} \]
Thermal Length, continued

High Θ
- Tall plate or multi-pass.
- “Difficult” job, requires more area for fixed heatload and flow rates.

Low Θ
- Short plate and single pass.
- “Easy” job, requires less area for fixed heatload and flow rates.
Thermal Length & Plate Length
Performance of heat exchanger

Heat Exchanger Performance

= Thermal Performance + Mechanical Performance
Performance of heat exchanger

Heat Exchanger Performance

=

Thermal Performance (Thermodynamic)
(heat Transfer, Pressure drop)

+

Mechanical Performance
(Fouling, pressure retention, component life, serviceability..Etc)
Parameters affecting cost of heat exchanger

- **Design Pressures and temperatures:**
 - Higher the pressure & Temperatures, higher the cost.
 - May require thicker materials, thicker frames, larger bolts.

- **Allowable Pressure drops:**
 - Lower the allowable pressure drops, the higher the costs
 - Will have to balance this with operating costs.

- **Flow rates:**
 - Too high a cooling / heating flow rate, with limited pr. Drop
 - Makes unit pressure drop restricted, larger in size
 - Advantage in LMTD negated by Pr. Drop restriction
Parameters affecting cost of heat exchanger

- **Temperature approaches:**
 - The closer the temperature approach, the larger the unit and higher the cost.

- **Fouling factor:**
 - “Fouling factor” is a “self fulfilling prophecy” for PHE
 - Only adds costs while increasing the possibility of fouling.

- **Manufacturing to particular codes**
 - Special material may be needed, Adds costs, since
 - May increase lead time.
Relation Between Heat Transfer And Pressure Drop

\[U \sim (\Delta p)^{1/3} \]

- Pressure drop, \(\Delta p \) = “price” you must pay for the heat transfer.
- High pressure drop \(\Rightarrow \) high velocity \(\Rightarrow \) high U-value \(\Rightarrow \) smaller unit
-BUT higher pumping cost (for very high \(\Delta p \))
- Tranter recommends \(\Delta p \) not less than 50 kPa
Relation Between Heat Transfer And Pressure Drop

\[U \sim (\Delta p)^{1/3} \]

Required heat transfer area vs. pressure drop
CASE STUDY

<table>
<thead>
<tr>
<th>Sr.</th>
<th>Cold in °C</th>
<th>Cold out °C</th>
<th>Cold flow Lps</th>
<th>Hot In °C</th>
<th>Hot out °C</th>
<th>Hot flow Lps</th>
<th>PD Cold kpa</th>
<th>PD Hot Kpa</th>
<th>LMTD °C</th>
<th>Heat duty MW</th>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.44</td>
<td>13.33</td>
<td>40</td>
<td>14.44</td>
<td>5.55</td>
<td>40</td>
<td>50</td>
<td>50</td>
<td>1.11</td>
<td>1.49</td>
<td>GC-054</td>
<td>$18,000</td>
</tr>
<tr>
<td>2</td>
<td>4.55</td>
<td>13.44</td>
<td>40</td>
<td>14.44</td>
<td>5.55</td>
<td>40</td>
<td>50</td>
<td>50</td>
<td>1.00</td>
<td>1.49</td>
<td>GC-054</td>
<td>$19,200</td>
</tr>
<tr>
<td>3</td>
<td>5.00</td>
<td>13.89</td>
<td>40</td>
<td>14.44</td>
<td>5.4</td>
<td>40</td>
<td>50</td>
<td>50</td>
<td>0.5</td>
<td>1.49</td>
<td>2#GC-054</td>
<td>$42,700</td>
</tr>
<tr>
<td>4</td>
<td>5.00</td>
<td>13.89</td>
<td>40</td>
<td>14.44</td>
<td>5.4</td>
<td>40</td>
<td>50</td>
<td>50</td>
<td>0.5</td>
<td>1.49</td>
<td>1#GX-205</td>
<td>$46,300</td>
</tr>
</tbody>
</table>
Q = U * A * LMTD
CASE STUDY

<table>
<thead>
<tr>
<th>Sr.</th>
<th>Cold in</th>
<th>Cold out</th>
<th>Cold flow</th>
<th>Hot In</th>
<th>Hot out</th>
<th>Hot flow</th>
<th>PD Cold</th>
<th>PD Hot</th>
<th>LMTD</th>
<th>Heat duty</th>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0°C</td>
<td>0°C</td>
<td>Lps</td>
<td>0°C</td>
<td>0°C</td>
<td>Lps</td>
<td>kpa</td>
<td>Kpa</td>
<td>0°C</td>
<td>MW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4.44</td>
<td>13.33</td>
<td>40</td>
<td>14.44</td>
<td>5.55</td>
<td>40</td>
<td>50</td>
<td>50</td>
<td>1.11</td>
<td>1.49</td>
<td>GC-054</td>
<td>$18,000</td>
</tr>
<tr>
<td>2</td>
<td>4.44</td>
<td>13.33</td>
<td>40</td>
<td>14.44</td>
<td>5.55</td>
<td>40</td>
<td>100</td>
<td>100</td>
<td>1.11</td>
<td>1.49</td>
<td>GC-054</td>
<td>$15,150</td>
</tr>
</tbody>
</table>
\[U \sim (\Delta p)^{1/3} \]

\[Q = U \times A \times \text{LMTD} \]
Typical Concerns / Discussions

- Fouling factor
- Flow direction
- Gaskets fixing means
- Weight of heat exchanger
- Codes / standards
FOULING FACTOR

7.4 Fouling margin

The purchaser shall specify a percentage fouling margin, F, calculated by

$$F = \left(\frac{U_{\text{clean}}}{U_{\text{service}}} - 1 \right) \times 100$$

where U is the heat transfer coefficient (overall thermal transmittance).
Fouling Factor – A Self Fulfilling Prophecy

FIG. 8 Comparison of tubeside and PHE fouling
A.4 Design — Fouling margin RP 7.4

Conventional fouling-resistance values used with shell-and-tube heat exchangers should not be used in the thermal design of plate-and-frame heat exchangers. Actual fouling resistances, if known, should be given. In the absence of applicable data, a minimum of 10% fouling margin should be included. For crude oil service this may need to be increased to 25%. It is important to ensure that the addition of the extra margin is taken into account when checking the thermal design of the unit. Wall shear-stress provides a good indication of fouling tendency in a plate-and-frame heat exchanger. A minimum wall shear-stress of 50 Pa (0.007 psi) is recommended.
Parallel versus diagonal flow

- Simple piping for individual unit
- Simpler layout for hygienic service
- Standardisation.
Parallel versus diagonal flow

- True counter current
- Better distribution
- Better heat transfer
- Simple pipeline.
- Identical plates
- NO Crossover of pipes

It is only inside the heat exchanger that flow travels diagonally.
Diagonal / parallel flow

- Pipe connected to headers in case of diagonal / parallel flow.
- Overall pipeline layout in plantroom will be same.
- Pipeline DO NOT CROSS.
Flow arrangement for parallel flow
Flow arrangement for diagonal flow
Glued versus clip-on gaskets

• Clip-on gasket
 – Easy to fix on the plate
 – Extra glue not required.
 – Some fear of “reaction” with glue…!

• Glued gasket
 – Easy to assemble the heat exchanger
 – Easy to disassemble the heat exchanger
Glue / clip / button on the gasket plays NO role in performance of the heat exchanger.
GASKET FIXING MEANS

• PURPOSE
 - Ensure that the gasket fixed onto the plate will remain in its place ONLY until the unit is assembled.

• Glue / clips play **NO** role in an assembled unit

• Glue / clip **DOES NOT** take part in performance of PHE.
GASKET FIXING MEANS

- Clips / glue are useful ONLY at the time of unit assembly / maintenance.
- In assembled heat exchanger clips / glue is useless.
TYPICAL CLIP-ON GASKET
Weight of the heat exchanger

Weight of Heat Transfer plates
 +
Weight of gaskets
 +
Weight of frame

Weight of Fixed Cover
 +
Weight of Removable Cover
 +
Weight of support column
 +
weight of guide bars
 +
Weight of Tightening bolts
Weight of the heat exchanger
Weight of heat exchanger (1672 kg) = Frame (1257 kg) + HT plates & gaskets (415 kg)
Code compliance

• ASME / PED
 • Objective to ensure Strong / design.

• ASME involves AI
 • PED self governed

• Customisation possible in ASME
 • Only Pre-approved designs in PED

• Exclusions
 • HEAT TRANSFER
 • Pressure drop
 • Fouling
 • Ease of Maintenance / Service
Code compliance

• ASME / PED
 • Same heat transfer

• Same heat transfer plates

• Same gaskets

• Pre-approved MOC for frames only

• Pre-approved design / thickness for frame only

• Pre-approved ITP / QAP
Codes & standards

- TEMA
 - Tubular Exchanger Manufacturer’s Association
- API 662
 - General refinery services
- EN 1148
 - Water to water heat exchangers for district heating
- PTC 12.5
 - Power test code
ARI 400 versus AHRI certified

- ARI 400
 - Standard on performance rating & tests
- AHRI Liquid / Liquid Heat Exchangers Certification Program
 - Performance certified by AHRI

Is not same as

“in accordance with AHRI standard 400”
ARI 400 versus AHRI certified

• Units certified by AHRI displayed in the directory (AHRI homepage)

• Certified models must have a unique denomination.

• AHRI has got a version of all manufacturers selection software's
 - Customers can contact AHRI and verify specifications
 - The software is used to generate all duties for tests
 - Tests verify that the software within tolerances

• Changes in selection software and rerates published in directory

• AHRI certification limited to only thermal performance

• Has no connection to pressure vessel regulations
Questions are welcome
THANK YOU