ELECTRICAL MOTOR
IMPORTANT ITEMS OF THE ELECTRICAL MOTOR

• WINDING INSULATION
• WINDING SLOTS
• QUALITY OF THE IMPREGNATING VARNISH
• BEARINGS (C4 CLEARENCE)
• GREASE
• POWER SUPPLY CABLE
• TERMINAL PLATE MATERIAL (IN SURROUNDED BY SMOKE)
• MANUFACTURING PROCESS
ELECTRICAL MOTOR
ELECTRICAL MOTOR
ELECTRICAL MOTOR
TEMPERATURE CERTIFICATION OF THE FAN
European Standard EN 12101-3

EN 12101-3

European Standard
Norme Européenne
Europäische Norm

August 2015

English Version

Smoke and heat control systems - Part 3: Specification for powered smoke and heat control ventilators (Fans)

Systemes pour la contrôle des fumées et de la chaleur - Partie 3 : Spécifications relatives aux ventilateurs pour le contrôle de fumées et de chaleur

Rauch- und Wärmefehlungen - Teil 3: Bestimmungen für maschinelle Rauch- und Wärmeeinleitungsgeräte

This European Standard was approved by CEN on 12 January 2015.

CEM members are bound to comply with the CEN-CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CEM members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom.
Classes of fire classification

<table>
<thead>
<tr>
<th>Classification</th>
<th>Class</th>
<th>Temperature (°C)</th>
<th>Time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑️</td>
<td>F_{200}</td>
<td>200</td>
<td>120</td>
</tr>
<tr>
<td>☑️</td>
<td>F_{300}</td>
<td>300</td>
<td>60</td>
</tr>
<tr>
<td>☑️</td>
<td>F_{400}</td>
<td>400</td>
<td>120</td>
</tr>
<tr>
<td>☑️</td>
<td>F_{400}</td>
<td>400</td>
<td>90</td>
</tr>
<tr>
<td>☑️</td>
<td>F_{600}</td>
<td>600</td>
<td>60</td>
</tr>
<tr>
<td>☑️</td>
<td>F_{842}</td>
<td>-</td>
<td>30</td>
</tr>
</tbody>
</table>

Free Classification for information only

<table>
<thead>
<tr>
<th>Classification</th>
<th>Class</th>
<th>Temperature (°C)</th>
<th>Time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑️</td>
<td>F'_{250}</td>
<td>250</td>
<td>120</td>
</tr>
<tr>
<td>☑️</td>
<td>F'_{300}</td>
<td>300</td>
<td>120</td>
</tr>
<tr>
<td>☑️</td>
<td>F'_{8} (A)</td>
<td>8</td>
<td>A</td>
</tr>
</tbody>
</table>

Motor Range: FIREMOTOR ABC 123
Type of tests

Figure C.1 — Fan connected directly to furnace
Type of tests

Figure C.2 — Fan connected to furnace by recirculating duct system
Type of tests
Type of tests

Figure C.3 — Fan mounted inside furnace

Key
1. Furnace
2. Fan

TEMPERATURE CERTIFICATION OF THE FAN
Type of tests
TESTING PROCEDURE

• Warm up period (dual purpose fans)

• Heat up period

• High temperature test
Results
Results
Results
Results
Results
Results
INSTALLATION IN THE TUNNEL
Possible commissioning problems

• Aerodynamic circuit
Aerodynamic circuit
Possible commissioning problems

- Aerodynamic circuit
- Location of the equipment
Location of the equipment
Location of the equipment
Possible commissioning problems

• Aerodynamic circuit
• Location of the equipment
• Electric connection
Electric connection
Electric connection
Electric connection
SUMMARY

• Adequate Fan Selection (Aerodynamic Design)
• Mechanical Design Capable of Withstanding the Stresses to the Temperature of the Hot Fumes
• Adequate Electrical Motor
• Correct Installation in the Tunnel
Questions?

Roberto Arias

Technical Director
ZITRON, S.A.
roberto@zitron.com
AVOIDING FAN SYSTEM EFFECT

Mark Stevens
Executive Director
AMCA International
mstevens@amca.org
Copyright Materials

This educational activity is protected by U.S. and International copyright laws. Reproduction, distribution, display, and use of the educational activity without written permission of the presenter is prohibited.

© AMCA International
Learning Objectives

- Definition of system effect
- How to calculate system effect
- System effect’s effect on power consumption
- The difference between inlet and outlet system effect
- How to avoid system effect
Fan Efficiency

Efficiency, η

Airflow, Q
Regulation

Efficiency, η

Airflow, Q

3 – 5 %

76 million ton2 of coal
What We Can Do

Efficiency, η

Airflow, Q
What We Can Do

Efficiency, η

Airflow, Q

25 - 40 %
Fan Testing for Air Performance
AMCA Standard 210
Nozzle Wall
AMCA 210 Test Results

![Graph showing the relationship between airflow (Q) and pressure (P) and power (H).]
AMCA Standards 500-D & L
Fan Operating Point

![Graph showing fan operating point](image)
Speed Change

- New Operating Point
- New speed
Damper Opening
System Effect 1st Definition

Installed duct configuration does not match tested duct configuration
Installation Type D Ducted Inlet/Ducted Outlet
AMCA Catalog Ratings

“Performance certified is for installation type:

- A: Free inlet, free outlet”
- B: Free inlet, ducted outlet”
- C: Ducted inlet, free outlet”
- D: Ducted inlet, ducted outlet”
System Effect 2nd Definition

Even when the tested duct configuration matches the installed duct configuration, improper duct design can introduce adverse flow conditions.
Elbow Example
AMCA Publication 201 Plenum Example
Plenum Example

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-F</td>
<td>duct friction at 5000CMH (Q)</td>
<td>747 Pa (duct design)</td>
</tr>
<tr>
<td>E</td>
<td>contraction loss-plenum to duct</td>
<td>50 Pa (part of duct system)</td>
</tr>
<tr>
<td>E</td>
<td>P_s energy required to create velocity at E</td>
<td>125 Pa (part of duct system)</td>
</tr>
<tr>
<td>D</td>
<td>P_v loss (also P_f loss) at D as result of air velocity decrease, P_s does not change from duct to plenum at D</td>
<td>0 Pa</td>
</tr>
<tr>
<td>C-D</td>
<td>outlet duct on fan as tested</td>
<td>0 Pa</td>
</tr>
<tr>
<td>Required Fan P_s</td>
<td></td>
<td>922 Pa</td>
</tr>
</tbody>
</table>
Plenum Example
Plenum Example

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-E</td>
<td>Duct friction at 5000CMH (Q)</td>
<td>747 Pa</td>
</tr>
<tr>
<td>D</td>
<td>Contraction loss-plenum to duct</td>
<td>50 Pa</td>
</tr>
<tr>
<td>D</td>
<td>P<sub>s</sub> energy required to create velocity at D</td>
<td>125 Pa</td>
</tr>
<tr>
<td>B-C</td>
<td>SEF</td>
<td>149 Pa</td>
</tr>
<tr>
<td>B-C</td>
<td>P<sub>v</sub> loss (also P<sub>r</sub> loss) at C as result of air velocity decrease, P<sub>s</sub> does not change from duct to plenum at C</td>
<td>0 Pa</td>
</tr>
<tr>
<td></td>
<td>Required Fan P<sub>s</sub></td>
<td>1071 Pa</td>
</tr>
</tbody>
</table>
Plenum Example from AMCA 201

Assuming:

- Use of the same fan for both systems
- Can attain both operating points with a change in speed

\[P_c = \left(\frac{N_c}{N} \right)^2 P \]

\[\frac{N_c}{N} = \left(\frac{P_c}{P} \right)^{1/2} \]

- Speed change ratio; \((1071/922)^{0.5} = 1.08\)
Plenum Example from AMCA 201

\[H_c = \left(\frac{N_c}{N} \right)^3 H \quad H, \text{ Fan Power} \]

- $1.08^3 = 1.25$ (fan law for power)
- The increased in power consumption to overcome system effect is about 25%
8% Speed Change

![Graph showing airflow, pressure, and power changes with 8% speed change. The graph indicates a 25% increase in pressure and an 8% increase in airflow.]
Inlet System Effect
Outlet System Effect
Speed Changes

Before increasing speed
• Check with the manufacturer for max safe operating speed
• Determine expected power increase
 ▪ Motor size
 ▪ Electric service
• Expect more noise